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Markov process 

A stochastic process is called a Markov process when it has the Markov property:

𝑃 𝑋𝑡𝑛
≤ 𝑥𝑛 𝑋𝑡𝑛−1

= 𝑥𝑛−1, … , 𝑋𝑡1
= 𝑥1 = 𝑃 𝑋𝑡𝑛

≤ 𝑥𝑛 𝑋𝑡𝑛−1
= 𝑥𝑛−1 ,  ∀n, ∀t1 < ··· < tn 

• The future path of a Markov process, given its current state (𝑋𝑡𝑛−1
) and the past history before 

𝑡𝑛−1, depends only on the current state (not on how this state has been reached). 

• The current state contains all the information (summary of the past) that is needed to 
characterize the future (stochastic) behavior of the process. 

• Given the state of the process at an instant its future and past are conditionally independent.

Example A process with independent increments is always a Markov process. 
𝑋𝑡𝑛

= 𝑋𝑡𝑛−1
+ (𝑋𝑡𝑛

− 𝑋𝑡𝑛−1
)

the increment is independent of all the previous increments 
which have given rise to the state 𝑋𝑡𝑛−1

 



Markov chain 

The use of the term Markov chain in the literature is ambiguous: it defines that the process 
is either a discrete time or a discrete state process. 

In the sequel, we limit the use of the term for the case where the process is both discrete 
time and discrete state. 

• Without loss of generality we can index the discrete instants of time by integers. 

– A Markov chain is thus a process Xn, n = 0,1,.... 

• Similarly we can denote the states of the system by integers Xn = 0, 1, . . . (the set of 
states can be finite or countably finite). 

In the following we additionally assume that the process is time homogeneous.
A Markov process of this kind is characterized by the (one-step) transition probabilities 

(transition from state i to state j):

 𝑝𝑖,𝑗 = 𝑃 𝑋𝑛 = 𝑗 𝑋𝑛−1 = 𝑖  
time homogeneity: the transition probability does 
not depend on n 



The probability of a path 

The probability of a path i0,i1,...,in is

𝑃{𝑋0 = 𝑖0, … , 𝑋𝑛 = 𝑖𝑛}=𝑃{𝑋0 = 𝑖0}𝑝𝑖0,𝑖1
𝑝𝑖1,𝑖2

… 𝑝𝑖𝑛−1,𝑖𝑛

Proof 

𝑃{𝑋0 = 𝑖0, 𝑋1 = 𝑖1}= 𝑃{𝑋1 = 𝑖1|𝑋0 = 𝑖0}𝑃{𝑋0 = 𝑖0}

𝑃{𝑋0 = 𝑖0, 𝑋1 = 𝑖1, 𝑋2 = 𝑖2}= 𝑃{𝑋2 = 𝑖2|𝑋1 = 𝑖1, 𝑋0 = 𝑖0}𝑃{𝑋1 = 𝑖1, 𝑋0 = 𝑖0}

=𝑃{𝑋0 = 𝑖0}𝑝𝑖0,𝑖1
𝑝𝑖1,𝑖2  

Similarly, the proof can be continued for longer sequences. 

𝑝𝑖0,𝑖1

𝑝𝑖1,𝑖2 𝑝𝑖0,𝑖1
𝑃{𝑋0 = 𝑖0} 

𝑃{𝑋0 = 𝑖0} i0          i1               i2                    i3            
•        •              •               •   ...               

𝑝𝑖1,𝑖2
𝑝𝑖0,𝑖1 𝑝𝑖2,𝑖3



Dynamics of a MC: The transition probability matrix of a Markov chain 

The transition probabilities can be arranged as transition probability matrix P = (pi,j) 

𝑷 =

𝑝0,0 𝑝0,1  𝑝0,2 ⋯
𝑝1,0 𝑝1,1  𝑝1,2 ⋯

⋮ ⋮ ⋮

• The row i contains the transition probabilities from state i to other states.
– since the system always goes to some state, the sum of the row probabilities is 1 

• A matrix with non-negative elements such that the sum of each row equals 1 is called a 
stochastic matrix. 

• One can easily show that the product of two stochastic matrices is a stochastic matrix. 

Initial state

final 
state



Many-step transition probability matrix 

The probability that the system, initially in state i, will

 in state j after two steps is 



𝑘

𝑝𝑖,𝑘𝑝𝑘,𝑗

(takes into account all paths via an intermediate state k). 

Clearly this the element {i, j} of the matrix P2. 

Similarly, one finds that the n-step transition probability matrix Pn.

Denote its elements by 𝑝𝑖,𝑗
(𝑛)

 (the subscript refers to the number of steps). Since it holds 
that

Pn =Pm·Pn−m   (0≤m≤n),we can write in component form 

𝑝𝑖,𝑗
(𝑛)

= σ𝑘 𝑝𝑖,𝑘
(𝑚)

𝑝𝑘,𝑗
(𝑛−𝑚)

 the Chapman-Kolmogorov equation 

This simply expresses the law of total probability, where the transition in n steps from state 
i to state j is conditioned on the system being in state k after m steps. 



State probabilities 

Denote 

𝜋𝑖 
(𝑛)

= 𝑃{𝑋𝑛 = 𝑖}      the probability that the process is in state i at time n 

Arrange the state probabilities at time n in a state probability vector 

𝛑(𝑛)=(𝜋0 
(𝑛)

, 𝜋1 
(𝑛)

, 𝜋2 
(𝑛)

,…)

By the law of total probability we have

𝑃{𝑋1 = 𝑖}=σ𝑘 𝑃{𝑋1 = 𝑖|𝑋0 = 𝑘}𝑃{𝑋0 = 𝑘} 

or 𝜋𝑖 
(1)

= σ𝑘 𝜋𝑘 
(0)

𝑝𝑘,𝑖      

and in vector form  𝛑(1) = 𝛑(0)𝐏

As the process is Markovian and 𝛑(1) represents the initial probabilities in the next step, 

𝛑(2) = 𝛑(1)𝑃 and generally           𝛑(𝑛) = 𝛑(𝑛−1)𝐏

from which we have recursively 

𝛑(𝑛) = 𝛑(0)𝐏𝑛 (Note, Pn is the n-step transition probability matrix.) 



Example

P=

1 − 𝑝 𝑝(1 − 𝑝) 𝑝2

1 − 𝑝 𝑝(1 − 𝑝) 𝑝2

0 1 − 𝑝 𝑝

    p = 1/3 

𝑷1=
1

9

6 2 1
6 2 1
0 6 3

=
0.6666 0.2222 0.1111
0.6666 0.2222 0.1111

0 0.6666 0.3333

𝑷2=
1

92

48 22 11
48 22 11
36 30 15

=
0.5926 0.2716 0.1358
0.5926 0.2716 0.1358
0.4444 0.3704 0.1852

𝑷4=
1

93

420 206 103
420 206 103
396 222 111

=
0.5761 0.2826 0.1413
0.5761 0.2826 0.1413
0.5432 0.3045 0.1523

𝑷8 = 
0.5714 0.2857 0.1429
0.5714 0.2857 0.1429
0.5714 0.3057 0.1429

Starting from an initial state i, the distribution 
of the final state can be read from the row i. 
After 8 steps the final state distribution is 
independent of the initial state (to the 
accuracy of four digits): “the process forgets 
its initial state”. 



Classification of states of a Markov chain 

State i leads to state j (written i → j), if there is 

a path i0 = i,i1,...,in = j such that all the tran- 

sition probabilities are positive, 𝑝𝑖𝑘,𝑖𝑘+1
> 0, k =

0,...,n−1.        Then (Pn)i,j > 0.

States i and j communicate (written i ↔ j), if 

i → j and j → i.

Communication is an equivalence relation: the states can be grouped into equivalent 
classes 

so that:

• within each class all the states communicate with each other
• two states from two different classes never communicate which each other 

The equivalence classes defined by the relation ↔ are called the irreducible classes of 
states 

A Markov chain with a state space which is an irreducible class (the 
only one, i.e. all the states communicate) is called irreducible. 



Classification of states (continued) 
A set of states is closed, if none of its states leads to any of the states outside the set. 

A single state which alone forms a closed set is called an absorbing state
- for an absorbing state we have pi,i = 1
- one may reach an absorbing state from other states, but one cannot get out of it 

Each state is either transient or recurrent. 
• A state i is transient if the probability of returning to the state is < 1.
i.e. there is a non-zero probability that the system never returns to the state. 

• A state i is recurrent if the probability of returning to the state is = 1.

i.e. with certainty, the system sometimes returns to the state. 

Recurrent states are further classified according to the expectation of the time Ti,i  it 
takes to return to the state: 

positive recurrent    null recurrent
expectation of first return time < ∞  expectation of first return time = ∞ 

The first return time Ti,i of state i is the time at which the Markov chain first returns to state i when X0 = i. 



Classification of states (continued)

If the first return time of state i can only be a multiple of an integer d > 1 the 
state i is called periodic. Otherwise the state is aperiodic. 

An aperiodic positive recurrent state is ergodic
A Markov chain is ergodic, iff all its states are ergodic. 

 



Classification of states (continued) 

Proposition: In an irreducible Markov chain either 
- all the states are transient, or
- all the states are null recurrent, or 
- all the states are positive recurrent 

Remarks on the life time of a state and the first return time 

The number of steps the system consecutively

stays in state i is geometrically distributed 

∼ Geom(1 − pi,i)

because the exit from the state occurs with the probability 1 − pi,i. 

After each visit of state i, the first return time Ti,i back to state i is independent of 
the first return times after any of the other visits to the state (follows from the 
Markov property). 

Denote ഥ𝑇i = E[Ti,i]                ഥ𝑇i = ቊ
∞ if the state is transient or null recurrent 
< ∞ 𝑖f the state is positive recurrent 



Limiting distribution VS stationary distribution

Q: What happens to pij
(n) as n goes to infinity?

Q: What is the lim P(n) as n->∞?

Q: Does it always converge? (we’ll see this later) 

➢If limit exists, then lim
𝑛→∞

𝑝𝑖𝑗
𝑛 = 𝜋𝑗 

for any initial state i

➢π = {π0, π1,…, πm} is called the stationary distribution

   IF π• P = π  → 𝜋𝑗 = σ 𝜋𝑖 ∙ 𝑝𝑖𝑗

 and Σiπi = 1

➢The above equation can be used to find π 
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Kolmogorov’s theorem 

In an irreducible, aperiodic Markov chain there always exist the limits 

𝜋𝑗= lim
𝑛→∞

𝜋𝑗 
(𝑛)

=
1

ത𝑇𝑗

and these are independent of the initial state. 

Furthermore, either

i) all the states of the chain are transient or all of the states are null recurrent; in either 

case πj = 0, ∀j, 

ii) all the states of the chain are positive recurrent, and there exists a unique stationary 

distribution π which is obtained as the solution of the equations 

π=π·P   or

π · eT = 1
𝜋𝑗 =  σ𝑖 𝜋𝑖𝑃𝑖,𝑗      and     σ𝑗 𝜋𝑗  =1  

(e is a row vector with all the components equal to 1, and

eT is the corresponding column vector) 



Remarks on the stationary distribution 

If the limit probabilities (the components of the vector) π exist, they must satisfy the 
equation π = πP, because 

π = lim
𝑛→∞

𝛑(𝑛) = lim
𝑛→∞

𝛑(𝑛+1) = lim
𝑛→∞

𝛑(𝑛).P = π.P

The equation π = πP can also be expressed in the form: π is the (left) eigenvector of the 
matrix P belonging to the eigenvalue 1 (or belonging to the eigenvalue 0 of the matrix 
(P−I)). 

πj defines which proportion of time (steps) the system stays in state j.

In an irreducible, aperiodic Markov, the limit distribution π  (aka steady state probabilities) 
is equal to the so called the stationary distribution or the equilibrium distribution 

Note. An equilibrium does not mean that nothing happens in the system, but merely that 
the information on the initial state of the system has been “forgot” or “washed out” 
because of the stochastic development. 



Global balance 

Equation π = πP or 𝜋𝑗 =  σ𝑖 𝜋𝑖𝑃𝑖,𝑗 ∀j, is often called the (global) balance condition. 

Since for row j; σ𝑖 𝑃𝑗,𝑖  =1 (the transition takes the system to some state), one can write 

                        σ𝑖 𝜋𝑗𝑃𝑗,𝑖                  =                 σ𝑖 𝜋𝑖𝑃𝑖,𝑗

If the balance equations are known to be satisfied for all but one of the states, they are 
automatically satisfied also for that particular state (due to conservation of probability flows) 

– the balance equations are linearly dependent
(⇒ the homogeneous equation π = πP has a non-zero solution) 

– the solution is determined up to a constant factor 

– in order to determine the unknown factor, one needs the normalization condition σ𝑗 𝜋𝑗  =1  

prob. that the system is in
state j and makes a transi- 
tion to another state 

prob. that the system is in
another state and makes a 
transition to state j 

One equation for each state j.

Balance of probability flows: there 
are as many exits form state j as 
there are entries to it. 



Example. We revisit the previous example (now with a general p). 

(π0 π1 π2)= (π0 π1 π2) 
1 − 𝑝 𝑝(1 − 𝑝) 𝑝2

1 − 𝑝 𝑝(1 − 𝑝) 𝑝2

0 1 − 𝑝 𝑝

 

Write the first two equations (equalities of the first two components of the vectors on the 
lhs and rhs)  

 π0 = (1−p)π0+(1−p)π1 ⇒ π0=1−𝑝

𝑝
π1 pπ0=(1 − 𝑝)π1     

π1 = p(1−p)π0 +p(1−p)π1 +(1−p)π2 = (1−p)2π1 +p(1−p)π1 +(1−p)π2

 = (1−p)π1+(1−p)π2

⇒ π1=1−𝑝

𝑝
π2 ⇒     π0=(

1−𝑝

𝑝
)2 π2

π = ((
1−𝑝

𝑝
)2 1−𝑝

𝑝
       1 ) π2  

By the normalization condition π0 + π1 + π2 = 1 one gets 

π = (
(1−𝑝)2

1−𝑝(𝑝−1)

𝑝(1−𝑝)

1−𝑝(𝑝−1)

𝑝2

1−𝑝(𝑝−1)
 ) With p = 

1

3
  :    π = ( 0.5714    0.2857     0.1429 ) 





Calculation of Stationary Distribution
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See appendix



Solving Stationary Equations in Infinite-State 
DTMCs

20

• Consider an unbounded queue that at every time step, with 
probability p = 1/40 one job arrives, and independently, with 
probability q = 1/30 one job departs.

• what is the average number of jobs in the system?

• we model the problem as a DTMC with an infinite number of states: 
0, 1, 2, . . . , representing the number of jobs at the router.

•  Let r = p(1 − q) =29/1200 and s = q(1 − p) = 39/1200 , where r < s.

r= one enters, no exit,    s= one exits, no enter



Solving Stationary Equations in Infinite-State 
DTMCs

21

• the DTMC for the unbounded Queue and the transition probability 
matirx 



Solving Stationary Equations in Infinite-State 
DTMCs
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• the stationary equations: 



Solving Stationary Equations in Infinite-State 
DTMCs
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• Q: How we solve this infinite number of equations?

• the first equation can be rewritten as

𝜋1 =
𝑟

𝑠
𝜋0

• And π2 in terms of π0

𝜋2 =
𝑟

𝑠

2

𝜋0

• And make a general guess 

𝜋𝑖 =
𝑟

𝑠

𝑖

𝜋0



Solving Stationary Equations in Infinite-State DTMCs
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• To verify your guess, you need to showthat it satisfies the stationary 
equations

• Using normalization equation   σ𝑖 𝜋𝑖



Solving Stationary Equations in Infinite-State 
DTMCs
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• Q: What is the average number of jobs at the server?

• A: Let N denote the number of jobs at the server. Then

• E[n]=0. π0+1. π1+2. π2+…

• Define

𝜌 =
𝑟

𝑠

• Then πi=ρi(1- ρ ) 



Solving Stationary Equations in Infinite-State 
DTMCs

26

• Thus

• For our example ρ = 29/39 and E[N] = 2.9. So on average there are about 3 jobs in the 
system. 
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